满分5 > 高中数学试题 >

已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截...

已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程,若不存在说明理由.
将圆C化成标准方程,假设存在以AB为直径的圆M,圆心M的坐标为(a,b).因为CM⊥l,则有kCM•kl=-1,表示出直线l的方程,从而求得圆心到直线的距离,再由:求解. 【解析】 圆C化成标准方程为(x-1)2+(y+2)2=9,假设存在以AB为直径的圆M,圆心M的坐标为(a,b). ∵CM⊥l,即kCM•kl=×1=-1 ∴b=-a-1 ∴直线l的方程为y-b=x-a,即x-y-2a-1=0 ∴|CM|2=()2=2(1-a)2 ∴|MB|2=|CB|2-|CM|2=-2a2+4a+7 ∵|MB|=|OM| ∴-2a2+4a+7=a2+b2,得a=-1或, 当a=时,b=-,此时直线l的方程为x-y-4=0 当a=-1时,b=0,此时直线l的方程为x-y+1=0 故这样的直线l是存在的,方程为x-y-4=0或x-y+1=0.
复制答案
考点分析:
相关试题推荐
已知f(x)=ax4+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x-2.  
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调递增区间.
查看答案
已知:四边形ABCD是空间四边形,E,H分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且manfen5.com 满分网
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上.
查看答案
求经过三点A(-1,-1),B(-8,0),C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.
查看答案
如图,这是一个奖杯的三视图,(1)请你说明这个奖杯是由哪些基本几何体组成的;
(2)求出这个奖杯的体积.

manfen5.com 满分网 查看答案
若f(x)=ax3+bx2+cx+d(a>0)在R上是增函数,则a,b,c的关系式为是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.