满分5 > 高中数学试题 >

已知抛物线C1:y2=4px(p>0),焦点为F2,其准线与x轴交于点F1;椭圆...

已知抛物线C1:y2=4px(p>0),焦点为F2,其准线与x轴交于点F1;椭圆C2:分别以F1、F2为左、右焦点,其离心率manfen5.com 满分网;且抛物线C1和椭圆C2的一个交点记为M.
(1)当p=1时,求椭圆C2的标准方程;
(2)在(1)的条件下,若直线l经过椭圆C2的右焦点F2,且与抛物线C1相交于A,B两点,若弦长|AB|等于△MF1F2的周长,求直线l的方程.
(1)m=1时,求出焦点坐标以及a,b 的值,写出椭圆方程. (2)由于△PF1F2周长为 2a+2c=6,故弦长|A1A2|=6,用点斜式设出直线L的方程,代入抛物线方程化简,得到根与系数的关系,代入弦长公式求出斜率 k的值. 【解析】 (1)当p=1时,F2(1,0),F1(-1,0) 设椭圆C2的标准方程为(a>b>0),∴c=1,= ∵c2=a2-b2,∴a=2,b= 故椭圆C2的标准方程为=1..(4分) (2)(ⅰ)若直线l的斜率不存在,则l:x=1,且A(1,2),B(1,-2),∴|AB|=4 又∵△MF1F2的周长等于|MF1|+|MF2|+|F1F2|=2a+2c=6≠|AB| ∴直线l的斜率必存在.(6分) (ⅱ)设直线l的斜率为k,则l:y=k(x-1) 由,得k2x2-(2k2+4)x+k2=0 ∵直线l与抛物线C1有两个交点A,B ∴△=[-(2k2+4)]2-4k4=16k2+16>0,且k≠0 设则可得,x1x2=1 于是|AB|== = == ∵△MF1F2的周长等于|MF1|+|MF2|+|F1F2|=2a+2c=6 ∴由=6,解得k= 故所求直线l的方程为.(12分)
复制答案
考点分析:
相关试题推荐
已知:f(x)=x2+px+q.
求证:(1)f(1)+f(3)-2f(2)=2;
(2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于manfen5.com 满分网
查看答案
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M,N分别为PB,BC的中点,且PA⊥平面ABCD,AC与BD相交于点O.
(1)求证:MN⊥BD;
(2)若PA=1,求二面角M-AC-N的大小.

manfen5.com 满分网 查看答案
如图,过点P(0,a3)(0<a<2)的两直线与抛物线y=-ax2相切于A,B两点,且AD和BC均垂直于直线y=-8,垂足分别为D,C,得矩形ABCD.
(1)求A,B两切点的坐标(用a表示);
(2)设矩形ABCD的面积为S(a),求S(a)的最大值.

manfen5.com 满分网 查看答案
某同学认为(a+b+c)2=a2+b2+c2成立,其理由是看上去和谐.请举出两个类似的等式,也是看上去具有和谐美,但实际上都是错误的.
等式一(要求与“导数”或“三角”有关):       
等式二(要求与“向量”或“函数”有关):   
[注:不按要求作答的不给分!]. 查看答案
已知函数manfen5.com 满分网,则函数f(x)的单调递增区间为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.