假设大王家订了一份报纸,送报人可能在早上6点-8点之间把报纸送到他家,他每天离家外出的时间在早上6点-9点之间.
(1)他离家前看不到报纸(称事件A)的概率是多少?(必须有过程、区域)
(2)请你设计一种用产生随机数模拟的方法近似计算事件A的概率.
考点分析:
相关试题推荐
已知算法:(1)指出其功能(用函数解析式式表示),(2)将该算法用流程图描述之.
查看答案
某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 | A | B | C | D | E |
销售额(x)/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额(y)/千万元 | 2 | 3 | 3 | 4 | 5 |
(1)求利润额y与销售额x之间的线性回归方程
(2)若该公司某月的总销售额为40千万元,则它的利润额估计是多少?
查看答案
从甲、乙两个城市随机抽取的16台自动售货机的销售额如下:
甲:5,6,8,10,10,14,18,18,22,25,27,30,30,41,43,58
乙:10,23,27,12,43,48,18,20,22,23,31,32,34,34,38,42,
(1)画出茎叶图.
(2)求出甲、乙两组数据的中位数、众数、极差分别是多少?
(3)不用计算比较甲、乙两组数据的平均数和方差的大小.
查看答案
某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4,求:
(1)他乘火车或乘飞机去的概率;
(2)他不乘轮船去的概率
(3)如果他去的概率为0.5,请问他有可能是乘何种交通工具去的?
查看答案
天气预报说,在今后的三天中,每一天下雨的概率为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:
90 79 66 19 19 25 27 19 32 81 24 58 56 96 83
43 12 57 39 30 27 55 64 88 73 01 13 13 79 89
则这三天中恰有两天下雨的概率约是
.
查看答案