满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,x∈R).当x=1...

已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,x∈R).当x=1时,函数f(x)的极植为-3-c.
(1)试确定a,b的值;
(2)求f(x)的单调区间;
(3)若对于任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
(1)求出f'(x),因为当x=1时,函数f(x)的极植为-3-c.得到f(1)=-3-c,f′(1)=0代入得f(x)的解析式即可;(2)令f′(x)=0求出函数的驻点,利用驻点讨论函数的增减性得到函数的单调区间即可; (3)要使不等式f(x)≥-2c2恒成立即-6x3-9x2-c≥-2c2对任意x>0恒成立,则函数的最小值大于等于-2c2得到关于c的不等式即可求出c的取值范围. 【解析】 (1)由f(x)=ax3+bx2-c,得f'(x)=3ax2+2bx, 当x=1时,f(x)的极值为-3-c, ∴,得,∴, ∴f(x)=6x3-9x2-c. (2)∵f(x)=6x3-9x2-c,∴f′(x)=18x2-18x=18x(x-1), 令f′(x)=0,得x=0或x=1. 当x<0或x>1时,f′(x)>0,f(x)单调递增;当0<x<1时,f′(x)<0,f(x)单调递减; ∴函数f(x)的单调递增区间是(-∞,0)和(1,+∞),单调递减区间是[0,1]. (3)∵f(x)≥-2c2对任意x>0恒成立,∴-6x3-9x2-c≥-2c2对任意x>0恒成立, ∵当x=1时,f(x)min=-3-c,∴-3-c≥-2c2,得2c2-c-3≥0, ∴c≤-1或. ∴c的取值范围是.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥底面ABCD.
(1)求证:AQ∥平面CEP;
(2)求证:平面AEQ⊥平面DEP;
(3)若EP=AP=1,求三棱锥E-AQC的体积.

manfen5.com 满分网 查看答案
已知关于x的不等式manfen5.com 满分网的解集为A,函数y=lg(2-|x-m|)的定义域为B.
(1)求A;
(2)当a<0时,若B⊆A,求实数m的取值范围.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且2b•cosA=c•cosA+a•cosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=manfen5.com 满分网,b+c=4,求△ABC的面积.
查看答案
给出两个命题:p:ax2+ax+1>0对x∈R恒成立.q:函数y=(a2-2a-2)x是增函数.若“p∧(¬q)”是真命题,则实数a的取值范围是    查看答案
已知sinx-2cosx=0,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.