满分5 > 高中数学试题 >

如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆的四个顶点,F为其右...

如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆manfen5.com 满分网的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
对椭圆进行压缩变换,,,椭圆变为单位圆:x'2+y'2=1,F'( ,0).根据题设条件求出直线B1T方程,直线直线B1T与x轴交点的横坐标就是该椭圆的离心率. 【解析】 对椭圆进行压缩变换,,, 椭圆变为单位圆:x'2+y'2=1,F'( ,0). 延长TO交圆O于N 易知直线A1B1斜率为1,TM=MO=ON=1,, 设T(x′,y′),则 ,y′=x′+1, 由割线定理:TB2×TA1=TM×TN , (负值舍去) 易知:B1(0,-1) 直线B1T方程: 令y′=0 ,即F横坐标 即原椭圆的离心率e=. 故选A.
复制答案
考点分析:
相关试题推荐
设O为坐标原点,F1,F2是双曲线manfen5.com 满分网(a>0,b>0)的焦点,若在双曲线上存在点P,满足manfen5.com 满分网,则该双曲线的渐近线方程为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S-EFG中必有( )
manfen5.com 满分网
A.SG⊥△EFG所在平面
B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面
D.GD⊥△SEF所在平面
查看答案
若直线mx-ny=4与⊙O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆manfen5.com 满分网的交点个数是( )
A.至多为1
B.2
C.1
D.0
查看答案
若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( )
A.若m⊂β,α⊥β,则m⊥α
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β
C.若α⊥γ,α⊥β,则β∥γ
D.若m⊥β,m∥α,则α⊥β
查看答案
manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.