满分5 > 高中数学试题 >

如图在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BC...

如图在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC,
(1)求证:BC⊥平面PAC
(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由.

manfen5.com 满分网
(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,而PA⊥BC,BC⊥AC,满足定理所需条件; (2)建立空间直角坐标系,求出各点坐标,由DE⊥平面PAC可知,∠DAE即是所求的二面角的平面角,利用向量的夹角的公式求出此角即可; (3)设D点的y轴坐标为a,DE⊥AE,DE⊥PE,当A-DE-P为直二面角时,PE⊥AE,利用垂直,向量的数量积为零建立等式关系,解之即可. 【解析】 (1) ⇒BC⊥平面PAC (2)建立空间直角坐标系如图,各点坐标分别为: P(0,0,1),B(0,1,0),C ∴, 由DE⊥平面PAC可知,∠DAE即是所求的二面角的平面角.∴, 故所求二面角的余弦值为 (3)设D点的y轴坐标为a,DE⊥AE,DE⊥PE,当A-DE-P为直二面角时,PE⊥AE ∴,所以符合题意的E存在.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+cx+d有极值.
(Ⅰ)求c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<manfen5.com 满分网d2+2d恒成立,求d的取值范围.
查看答案
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
(1)证明:AB⊥平面VAD;         
(2)求面VAD与面VDB所成的二面角的余弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
查看答案
设f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,求:
(1)f(1);
(2)若f(x)+f(x-8)≤2,求x的取值范围.
查看答案
已知曲线y=manfen5.com 满分网x3+manfen5.com 满分网,则过点P(2,4)的切线方程是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.