登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知cosα=,cos(α-β)=,且0<β<α<, (Ⅰ)求tan2α的值; ...
已知cosα=
,cos(α-β)=
,且0<β<α<
,
(Ⅰ)求tan2α的值;
(Ⅱ)求β.
(1)欲求tan2α的值,由二倍角公式知,只须求tanα,欲求tanα,由同角公式知,只须求出sinα即可,故先由题中coaα的求出sinα 即可; (2)欲求角,可通过求其三角函数值结合角的范围得到,这里将角β配成β=α-(α-β),利用三角函数的差角公式求解. 【解析】 (Ⅰ)由,得 ∴,于是 (Ⅱ)由0<β<α<,得, 又∵,∴ 由β=α-(α-β)得:cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)= 所以.
复制答案
考点分析:
相关试题推荐
已知tanα=2,求下列各式的值.
(1)
(2)cos2α
查看答案
关于函数f(x)=4sin(2x+
)(x∈R),有下列命题:
①由f(x
1
)=f(x
2
)=0可得x
1
-x
2
必是π的整数倍;
②y=f(x)的表达式可改写为y=4cos(2x-
);
③y=f(x)的图象关于点(-
,0)对称;
④y=f(x)的图象关于直线x=-
对称.
其中正确的命题的序号是
.
查看答案
若|
|=3,|
|=2,且
与
的夹角为60°,则|
-
|=
查看答案
若
与
垂直,则y=
.
查看答案
已知|
|=4,
,向量
在
方向上的投影为
,
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.