(1)由 =1求得sin(A+ )=,根据 <A+<,可得 A+=,从而得到 A 值.
(2)由sinB+sinC=sin(B+ ) 及 <B+<,可得<sin(B+ )≤1,从而得到 sinB+sinC的取值范围.
【解析】
(1)=sinA+cosA=2sin(A+ )=1,∴sin(A+ )=.
∵0<A<π,∴<A+<,∴A+=,∴A=.
(2)求sinB+sinC=sinB+sin( -B)=cosB+ sinB=sin(B+ ).
∵0<B<,∴<B+<,∴<sin(B+ )≤1,
∴<sinB+sinC≤1.