满分5 > 高中数学试题 >

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2...

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.
(Ⅰ)观察数列特点看元素是否按次序对应相等即看判断数列是否为5阶可重复数列; (Ⅱ)数为m的数列{an}一定是3阶可重复数列,数列的每一项只可以是0或1,则连续3项共有8种不同的情况,m=11数列有九组连续3项,m=10不是3阶可重复数列,而3≤m<10时,均存在不是“3阶可重复数列”的数列,要使数列一定是3阶可重复数列m的最小值必须是11; (Ⅲ)利用反证法证明a4=am=1.假设如果a1,a2,a3,a4与am-3,am-2,am-1,am不能按次序对应相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3与am-3,am-2,am-1,am按次序对应相等.考虑ai-1,aj-1和am-4,其中必有两个相同,这就导致数列{an}中有两个连续的五项恰按次序对应相等,从而数列{an}是“5阶可重复数列”,这和题设中数列{an}不是“5阶可重复数列”矛盾得证. 【解析】 (Ⅰ)记数列①为{bn},因为b2,b3,b4,b5,b6与b6,b7,b8,b9,b10按次序对应相等, 所以数列①是“5阶可重复数列”,重复的这五项为0,0,1,1,0; 记数列②为{cn},因为c1,c2,c3,c4,c5、c2,c3,c4,c5,c6、c3,c4,c5,c6,c7、c4,c5,c6,c7,c8、c5,c6,c7,c8,c9、c6,c7,c8,c9,c10没有完全相同的,所以{cn}不是“5阶可重复数列”. (Ⅱ)因为数列{an}的每一项只可以是0或1,所以连续3项共有23=8种不同的情形. 若m=11,则数列{an}中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{an}一定是“3阶可重复数列”;若m=10,数列0,0,1,0,1,1,1,0,0,0不是“3阶可重复数列”;则3≤m<10时, 均存在不是“3阶可重复数列”的数列{an}. 所以,要使数列{an}一定是“3阶可重复数列”,则m的最小值是11. (Ⅲ)由于数列{an}在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{an}的末项am后再添加一项0或1,则存在i≠j,使得ai,ai+1,ai+2,ai+3,ai+4与am-3,am-2,am-1,am,0按次序对应相等,或aj,aj+1,aj+2,aj+3,aj+4与am-3,am-2,am-1,am,1按次序对应相等, 如果a1,a2,a3,a4与am-3,am-2,am-1,am不能按次序对应相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3与am-3,am-2,am-1,am按次序对应相等. 此时考虑ai-1,aj-1和am-4,其中必有两个相同,这就导致数列{an}中有两个连续的五项恰按次序对应相等,从而数列{an}是“5阶可重复数列”,这和题设中数列{an}不是“5阶可重复数列”矛盾; 所以a1,a2,a3,a4与am-3,am-2,am-1,am按次序对应相等, 从而am=a4=1.
复制答案
考点分析:
相关试题推荐
已知抛物线W:y=ax2经过点A(2,1),过A作倾斜角互补的两条不同直线l1,l2
(Ⅰ)求抛物线W的方程及准线方程;
(Ⅱ)当直线l1与抛物线W相切时,求直线l2的方程
(Ⅲ)设直线l1,l2分别交抛物线W于B,C两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
查看答案
已知函数manfen5.com 满分网(其中a∈R).
(Ⅰ)若函数f(x)在点(1,f(1))处的切线为manfen5.com 满分网,求实数a,b的值;
(Ⅱ)求函数f(x)的单调区间.
查看答案
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(Ⅰ)求证:DE∥平面PFB;
(Ⅱ)已知二面角P-BF-C的余弦值为manfen5.com 满分网,求四棱锥P-ABCD的体积.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为manfen5.com 满分网,b=5,△ABC的面积为manfen5.com 满分网
(Ⅰ)求a,c的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.