满分5 > 高中数学试题 >

如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形, AB=BC=,BB...

如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,
AB=BC=manfen5.com 满分网,BB1=3,D为A1C1的中点,F在线段AA1上.
(1)AF为何值时,CF⊥平面B1DF?
(2)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值.

manfen5.com 满分网
本题适合建立空间坐标系得用向量法解决这个立体几何问题,建立空间坐标系,给出有关点的坐标,设出点F的坐标,(I)由线面垂直转化为线的方向向量与面的法向量垂直,利用二者内积为零建立关于参数的方程参数.(II)求出两平面的法向量,利用夹角公式求二面角的余弦值即可. 【解析】 (1)因为直三棱柱ABC-A1B1C1中, BB1⊥面ABC,∠ABC=. 以B点为原点,BA、BC、BB1分别为x、y、z轴建立如图所示空间直角坐标系. 因为AC=2,∠ABC=90°,所以AB=BC=, 从而B(0,0,0),A,C,B1(0,0,3),A1,C1,D,E. 所以, 设AF=x,则F(,0,x),.,所以. 要使CF⊥平面B1DF,只需CF⊥B1F. 由=2+x(x-3)=0,得x=1或x=2, 故当AF=1或2时,CF⊥平面B1DF.(5分) (2)由(1)知平面ABC的法向量为n1=(0,0,1). 设平面B1CF的法向量为n=(x,y,z),则由得 令z=1得, 所以平面B1CF与平面ABC所成的锐二面角的余弦值.
复制答案
考点分析:
相关试题推荐
已知二项式manfen5.com 满分网的展开式中各项系数的和为256.
(1)求n.
(2)求展开式中的常数项.
查看答案
选做题
A.选修4-2矩阵与变换
已知矩阵manfen5.com 满分网,向量manfen5.com 满分网=manfen5.com 满分网
(Ⅰ)求A的特征值λ1、λ2和特征向量α1、α2;   (Ⅱ)计算A6α的值.
B.选修4-4坐标系与参数方程
已知直线l的参数方程为manfen5.com 满分网(t为参数),P是椭圆manfen5.com 满分网上任意一点,求点P到直线l的距离的最大值.
查看答案
已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=manfen5.com 满分网
(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程manfen5.com 满分网有三个不同的实数解,求实数k的范围.
查看答案
已知等差数列an中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由manfen5.com 满分网(c≠0)构成的新数列为bn,求证:当且仅当manfen5.com 满分网时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设manfen5.com 满分网(n∈N*),数列cn的前n项和为Tn,现有数列f(n),manfen5.com 满分网(n∈N*),
求证:存在整数M,使f(n)≤M对一切n∈N*都成立,并求出M的最小值.
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3).
(Ⅰ)求椭圆C和直线l的方程;
(Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线x2-2mx+y2+4y+m2-4=0与D有公共点,试求实数m的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.