本题适合建立空间坐标系得用向量法解决这个立体几何问题,建立空间坐标系,给出有关点的坐标,设出点F的坐标,(I)由线面垂直转化为线的方向向量与面的法向量垂直,利用二者内积为零建立关于参数的方程参数.(II)求出两平面的法向量,利用夹角公式求二面角的余弦值即可.
【解析】
(1)因为直三棱柱ABC-A1B1C1中,
BB1⊥面ABC,∠ABC=.
以B点为原点,BA、BC、BB1分别为x、y、z轴建立如图所示空间直角坐标系.
因为AC=2,∠ABC=90°,所以AB=BC=,
从而B(0,0,0),A,C,B1(0,0,3),A1,C1,D,E.
所以,
设AF=x,则F(,0,x),.,所以.
要使CF⊥平面B1DF,只需CF⊥B1F.
由=2+x(x-3)=0,得x=1或x=2,
故当AF=1或2时,CF⊥平面B1DF.(5分)
(2)由(1)知平面ABC的法向量为n1=(0,0,1).
设平面B1CF的法向量为n=(x,y,z),则由得
令z=1得,
所以平面B1CF与平面ABC所成的锐二面角的余弦值.