满分5 > 高中数学试题 >

在△ABC中,若2cosB•sinA=sinC,则△ABC的形状一定是( ) A...

在△ABC中,若2cosB•sinA=sinC,则△ABC的形状一定是( )
A.等腰直角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
在△ABC中,总有A+B+C=π,利用此关系式将题中:“2cosB•sinA=sinC,”化去角C,最后得到关系另外两个角的关系,从而解决问题. 解析:∵2cosB•sinA=sinC=sin(A+B)⇒sin(A-B)=0, 又B、A为三角形的内角, ∴A=B. 答案:C
复制答案
考点分析:
相关试题推荐
曲线y=x3-3x2+1在P(0,1)处的切线方程是( )
A.y=x+1
B.y=1
C.x=0
D.不存在
查看答案
设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为( )
manfen5.com 满分网
A.{x|x≥1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|x≤1}
查看答案
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,manfen5.com 满分网点E是SD上的点,且DE=λa(0<λ≤2)
(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE
(Ⅱ)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.

manfen5.com 满分网 查看答案
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的manfen5.com 满分网倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M,
(1)求证:平面ABM⊥平面PCD;
(2)求直线PC与平面ABM所成的角;
(3)求点O到平面ABM的距离.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.