满分5 > 高中数学试题 >

函数f(x)=ax3+bx2+cx+3-a,(a,b,c∈R,且a≠0)当x=-...

函数f(x)=ax3+bx2+cx+3-a,(a,b,c∈R,且a≠0)当x=-1时,f(x)取得极大值2
(1)用关于a的代数式分别表示b与c.
(2)求a的取值范围.
(1)求出函数的导函数,由已知在x=-1处f(x)取得极大值2,代入可得方程组,进一步得到a,b,c的关系. (2)在(1)的基础上得到函数f(x)的导数f′(x)=3ax2+2(a+1)x+2-a,由已知要使函数f(x)有极大值需要对二次项系数a和极值点进行讨论,易得结论. 【解析】 (1)f′(x)=3ax2+2bx+c∴ (2)由(1)得 令f′(x)=0解得x1=-1,x2= ∴要使f(x)极大值为f(-1)=2,则<-1 ∴a>
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点.
(1)证明平面PED⊥平面PAB;
(2)求二面角P-AB-F的平面角的余弦值.

manfen5.com 满分网 查看答案
为应对金融危机,刺激消费,某市给市民发放面额为100元的旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
200元300元400元500元
老年0.40.30.20.1
中年0.30.40.20.1
青年0.30.30.20.2
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(1)求这三人恰有两人消费额不少于300元的概率;
(2)求这三人消费总额大于或等于1300元的概率.
查看答案
(理)已知向量manfen5.com 满分网=(1,1),向量manfen5.com 满分网和向量manfen5.com 满分网的夹角为manfen5.com 满分网,|manfen5.com 满分网|=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=-1.
(1)求向量manfen5.com 满分网
(2)若向量manfen5.com 满分网与向量manfen5.com 满分网=(1,0)的夹角为manfen5.com 满分网,向量manfen5.com 满分网=(cosA,manfen5.com 满分网),其中A、B、C为△ABC的内角a、b、c为三边,b2+ac=a2+c2,求|manfen5.com 满分网+manfen5.com 满分网|的取值范围.
查看答案
设X、Y、Z是空间不同的直线或平面,对下面四种情形,使“X⊥Z且Y⊥Z⇒X∥Y”为真命题的是    (填序号)
①X、Y、Z是直线;②X、Y是直线,Z是平面;③Z是直线,X、Y是平面;④X、Y、Z是平面. 查看答案
已知数列{an}中manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.