椭圆
的中心到准线的距离是( )
A.2
B.3
C.
D.
考点分析:
相关试题推荐
已知函数
(a,b,c为常数,a≠0).
(Ⅰ)若c=0时,数列a
n满足条件:点(n,a
n)在函数
的图象上,求a
n的前n项和S
n;
(Ⅱ)在(Ⅰ)的条件下,若a
3=7,S
4=24,p,q∈N
*(p≠q),证明:
;
(Ⅲ)若c=1时,f(x)是奇函数,f(1)=1,数列x
n满足
,x
n+1=f(x
n),求证:
.
查看答案
设椭圆C:
(a>b>0)的左、右焦点分别为F
1,F
2,上顶点为A,过点A与AF
2垂直的直线交x轴负半轴于点Q,且
,若过A,Q,F
2三点的圆恰好与直线l:
相切.过定点M(0,2)的直线l
1与椭圆C交于G,H两点(点G在点M,H之间).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l
1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数λ满足
,求λ的取值范围.
查看答案
已知函数f(x)=ax
2+bx+1(a,b为实数),x∈R,
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
查看答案
已知函数
(a∈R).
(Ⅰ)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当
时,讨论f(x)的单调性.
查看答案
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,侧面PAB为等边三角形,侧棱
.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求证:平面PAB⊥平面ABC;
(Ⅲ)求二面角B-AP-C的余弦值.
查看答案