由离心率能够得出b2=ac,再根据题意得出|AF|=a+c|BF|=c,|AB|2=a2+b2,进而判断BF|2+|AB|2=|AF|2,从而得出
∠ABF等于90°.
【解析】
由题意知因为e==
∴==
∴==
∴b2=ac
∵|AF|=a+c|BF|=c,在直角三角形BOF中易得|BF|2=c2+b2
∴|AF|2=a2+2ac+c2|AB|2=a2+b2
又∵上面推出b^2=ac,
故|BF|2=c2+b2=c2+ac
显然|BF|2+|AB|2=|AF|2
∴∠ABF=90°
故选C.