满分5 > 高中数学试题 >

已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为. (Ⅰ)求椭...

已知椭圆C:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,短轴一个端点到右焦点的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为manfen5.com 满分网,求△AOB面积的最大值.
(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程. (Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m. 由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0,然后由根与系数的关系进行求解. 【解析】 (Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为. (Ⅱ)设A(x1,y1),B(x2,y2). (1)当AB⊥x轴时,. (2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m. 由已知,得. 把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0, ∴,. ∴|AB|2=(1+k2)(x2-x1)2 = = = = =. 当且仅当,即时等号成立.当k=0时,, 综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值.
复制答案
考点分析:
相关试题推荐
已知定点A(-3,0),两动点B、C分别在y轴和x轴上运动,且满足manfen5.com 满分网
(1)求动点Q的轨迹E的方程;
(2)过点G(0,1)的直线l与轨迹E在x轴上部分交于M、N两点,线段MN的垂直平分线与x轴交于D点,求D点横坐标的取值范围.
查看答案
已知P为抛物线y=x2上的动点,定点A(a,0)关于P点的对称点是Q,
(1)求点Q的轨迹方程;
(2)若(1)中的轨迹与抛物线y=x2交于B、C两点,当AB⊥AC时,求a的值.
查看答案
设a>0,b>0,c>0,求证:manfen5.com 满分网
查看答案
过双曲线manfen5.com 满分网的右焦点F2,作倾斜角为manfen5.com 满分网的直线交双曲线于A、B两点,
求:(1)|AB|的值;
(2)△F1AB的周长(F1为双曲线的左焦点).
查看答案
已知双曲线与椭圆manfen5.com 满分网有相同的焦点,且双曲线与椭圆的一个交点的纵坐标为4,求双曲线的方程,并求其渐近线方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.