满分5 > 高中数学试题 >

在△ABC中,若a2=b2+bc+c2,则A=( ) A.30° B.60° C...

在△ABC中,若a2=b2+bc+c2,则A=( )
A.30°
B.60°
C.120°
D.150°
本题考查的知识点是余弦定理,观察到已知条件是“在△ABC中,求A角”,固这应该是一个解三角形问题,又注意到a2=b2+bc+c2给出的三角形三边的关系,利用余弦定理解题比较恰当. 【解析】 ∵a2=b2+bc+c2 ∴-bc=b2+c2-a2 由余弦定理的推论得: == 又∵A为三角形内角 ∴A=120° 故选C
复制答案
考点分析:
相关试题推荐
下列曲线中离心率为manfen5.com 满分网的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知数列{an}的各项均为正数,Sn为其前n项和,且对任意的n∈N+,有manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
过点(1,0)的直线与中心在原点,焦点在x轴上且率心率为manfen5.com 满分网的椭圆C相交于A、B两点,直线y=manfen5.com 满分网x过线段AB中点,同时椭圆C上存在一眯与右焦点关于直线l对称,试求直线l与椭圆C的方程.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求bc的最大值.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.