满分5 > 高中数学试题 >

在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是( ) A.直...

在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.正三角形
根据三角形三个内角和为180°,把角C变化为A+B,用两角和的正弦公式展开移项合并,公式逆用,得sin(B-A)=0,因为角是三角形的内角,所以两角相等,得到三角形是等腰三角形. 【解析】 由2sinAcosB=sinC知2sinAcosB=sin(A+B), ∴2sinAcosB=sinAcosB+cosAsinB. ∴cosAsinB-sinAcosB=0. ∴sin(B-A)=0, ∵A和B是三角形的内角, ∴B=A. 故选B
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的前13项之和为39,则a6+a7+a8等于( )
A.6
B.9
C.12
D.18
查看答案
已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足manfen5.com 满分网
(1)当x为正整数时,求f(n)的表达式;
(2)设λ=3,求a1+a2+a3+…+a2n
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.
查看答案
某地区预计从2011年初开始的第x月,商品A的价格manfen5.com 满分网(x∈N,x≤12,价格单位:元),且第x月该商品的销售量g(x)=x+12(单位:万件).(1)2011年的最低价格是多少?(2)2011年的哪一个月的销售收入最少?
查看答案
已知直线l:y=x+1与曲线C:manfen5.com 满分网交于不同的两点A,B,O为坐标原点.
(Ⅰ)若|OA|=|OB|,求证:曲线C是一个圆;
(Ⅱ)若OA⊥OB,当a>b且manfen5.com 满分网时,求曲线C的离心率e的取值范围.
查看答案
如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,
(1)以向量manfen5.com 满分网方向为侧视方向,侧视图是什么形状?
(2)求证:CN∥平面AMD;
(3)求面AMN与面NBC所成二面角的余弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.