①只需说明在点x=0处连续,只需说明在x=0时,两段都有意义且函数值相等;
②只需说明在x=0时,两段导函数都有意义且函数值相等;
③只需说明函数f(x)在R上不是单调函数,用导数来证;
④求导,判断f(x)的单调性,从而求出极大值,也就是最大值;
⑤已知函数在R上先增后减,所以f(x)的图象在[0,+∞)上是上凸的,所以任取两点连线应在图象的下方,故⑤错误.
【解析】
①x=0时,(0-3)e=-3,x=0时,2ax-3有意义,且2ax-3=-3,
∴函数f(x)在x=0处都连续,即函数f(x)在每一点处都连续;
∴①正确
②f′(x)=(a>0),
x=0时,e(4-0)=4,令2a=4得a=2,
∴a=2,函数f(x)在x=0处可导;
∴②正确
③令f′(x)>0,得x<4,令f′(x)<0,得x>4,
∴f(x)在(-∞,4]上是增函数,在[4,+∞)上是减函数,
∴函数f(x)在R上不存在反函数;
∴③错误
④令f′(x)=0,得x=4,x<4时,f′(x)>0,x>4时,f′(x)<0,
∴x=4时,f(x)有最大值为f(4)=e-4=;
∴④正确
⑤在函数f(x)[0,+∞)上任取两点(x1,f(x1))(x2,f(x2))
∵f(x)的图象在[0,+∞)上是上凸的,所以两点连线应在图象的下方,
∴f()>
∴⑤错误.
故答案为①②④