满分5 > 高中数学试题 >

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1. (1)求f(...

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
(1)先设f(x)=ax2+bx+c,在利用f(0)=1求c,再利用两方程相等对应项系数相等求a,b即可. (2)转化为x2-3x+1-m>0在[-1,1]上恒成立问题,找其在[-1,1]上的最小值让其大于0即可. 【解析】 (1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1. 因为f(x+1)-f(x)=2x,所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x. 即2ax+a+b=2x,所以,∴, 所以f(x)=x2-x+1 (2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立. 设g(x)=x2-3x+1-m,其图象的对称轴为直线,所以g(x)在[-1,1]上递减. 故只需g(1)>0,即12-3×1+1-m>0, 解得m<-1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为y=-3x+1.
(1)若函数f(x)在x=-2时有极值,求f(x)的表达式
(2)若函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.
查看答案
如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t).试求函数f(t)的解析式,并画出函数y=f(t)的图象.

manfen5.com 满分网 查看答案
f(x)=manfen5.com 满分网,则f(x)值域为    查看答案
曲线manfen5.com 满分网和y=x2在它们的交点处的两条切线与x轴所围成的三角形的面积是    查看答案
“a<0”是方程“ax2+2x+1=0至少有一个负数根”的     条件. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.