满分5 > 高中数学试题 >

已知f(x)=x3+bx+cx+d在(-∞,0)上是增函数,在[0,2]上是减函...

已知f(x)=x3+bx+cx+d在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α,2,β.
(1)求c的值;
(2)求证f(1)≥2;
(3)求|α-β|的取值范围.
(1)根据f(x)在(-∞,0]上是增函数,在(0,2]上是减函数;得到x=0是f'(x)=0的根,求导f'(x)=3x2+2bx+c,即可求得f'(0)=0,c=0; (2)根据f(1)=1+b+d,f(2)=0,得到d=-8-4b且b≤-3,利用不等式的基本性质可证f(1)=1+b-8-4b=-7-3b≥2; (3)由f(x)=0有三根α,2,β;得到f(x)=(x-α)(x-2)(x-β)=x3-(α+β+2)•x2-2αβ,因此;∴故|β-α|2=(α+β)2-4αβ=(b+2)2+2d=b2+4b+4-16-8b=b2-4b-12=(b-2)2-16,利用b≤-3,求得|β-α|≥3. 【解析】 (1)∵f(x)在(-∞,0]上是增函数,在(0,2]上是减函数; ∴x=0是f'(x)=0的根,又∵f'(x)=3x2+2bx+c,∴f'(0)=0,∴c=0. (2)∵f(x)=0的根为α,2,β, ∴f(2)=0,∴8+4b+d=0,又∵f'(2)≤0, ∴12+4b≤0,∴b≤-3,又d=-8-4b ∴d≥4 f(1)=1+b+d,f(2)=0 ∴d=-8-4b且b≤-3, ∴f(1)=1+b-8-4b=-7-3b≥2 (3)∵f(x)=0有三根α,2,β; ∴f(x)=(x-α)(x-2)(x-β) =x3-(α+β+2)•x2-2αβ ∴; ∴|β-α|2=(α+β)2-4αβ =(b+2)2+2d =b2+4b+4-16-8b =b2-4b-12 =(b-2)2-16 又∵b≤-3,∴|β-α|≥3
复制答案
考点分析:
相关试题推荐
已知ABCD为直角梯形,AD∥BC,∠BAD=90°,AD=AB=1,BC=2,PA⊥平面ABCD,
(1)若异面直线PC与BD所成的角为θ,且manfen5.com 满分网,求|PA|;
(2)在(1)的条件下,设E为PC的中点,能否在BC上找到一点F,使EF⊥CD?
(3)在(2)的条件下,求二面角B-PC-D的大小.

manfen5.com 满分网 查看答案
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
查看答案
已知函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为y=-3x+1.
(1)若函数f(x)在x=-2时有极值,求f(x)的表达式
(2)若函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.
查看答案
如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t).试求函数f(t)的解析式,并画出函数y=f(t)的图象.

manfen5.com 满分网 查看答案
f(x)=manfen5.com 满分网,则f(x)值域为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.