(I)欲求直线l2的方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合l1⊥l2即可求出切线的斜率.从而问题解决.
(II)先通过解方程组得直线l1和l2的交点的坐标和l1、l2与x轴交点的坐标,最后根据三角形的面积公式教育处所求三角形的面积即可.
【解析】
(I)y′=2x+1.
直线l1的方程为y=3x-3.
设直线l2过曲线y=x2+x-2上的点B(b,b2+b-2),则l2的方程为y=(2b+1)x-b2-2
因为l1⊥l2,则有k2=2b+1=.
所以直线l2的方程为.
(II)解方程组得
所以直线l1和l2的交点的坐标为.
l1、l2与x轴交点的坐标分别为(1,0)、.
所以所求三角形的面积.