满分5 > 高中数学试题 >

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是...

manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
(I)以C为坐标原点,建立空间直角坐标系,求出各点的坐标,进而求出直线AM的方向向量及平面BDE的法向量,易得这两个向量垂直,即AM∥平面BDE; (2)求出平面ADF与平面BDF的法向量,利用向量夹角公式求出夹角,即可得到二面角A-DF-B的大小; (3)点P为线段AC的中点时,直线PF与CD所成的角为60°,我们设出点P的坐标,并由此求出直线PF与CD的方向向量,再根据PF与CD所成的角是60°构造方程组,解方程即可得到结论. 证明:(Ⅰ)建立如图所示的空间直角坐标系 设AC∩BD=N,连接NE, 则点N、E的坐标分别是(、(0,0,1), ∴=(, 又点A、M的坐标分别是 ()、( ∴=( ∴=且NE与AM不共线, ∴NE∥AM 又∵NE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDF 【解析】 (Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A, ∴AB⊥平面ADF ∴为平面DAF的法向量 ∵=•=0, ∴=•=0得,∴NE为平面BDF的法向量 ∴cos<>= ∴的夹角是60° 即所求二面角A-DF-B的大小是60° (3)设P(x,x),,,则 cos=,解得或(舍去) 所以当点P为线段AC的中点时,直线PF与CD所成的角为60°.(12分)
复制答案
考点分析:
相关试题推荐
某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如右图:
(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表.据此,计算这100名学生身高数据的期望μ及标准差φ(精确到0.1);
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数.
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
身高达标身高不达标总计
积极参加体育锻炼40
不积极参加体育锻炼15
总计100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K2=manfen5.com 满分网,参考数据:
P(K2≥k)0.400.250.150.100.050.025
k0.7081.3232.0722.7063.8415.024

查看答案
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(manfen5.com 满分网,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.
查看答案
曲线C的参数方程是:manfen5.com 满分网(θ为参数),设O为坐标原点,点M(x,y)在C上运动,点P(x,y)是线段OM的中点,则点P轨迹的普通方程为    查看答案
manfen5.com 满分网如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=2manfen5.com 满分网,若∠CAP=30°,则⊙O的直径AB=    查看答案
给定下列四个命题:
①∃x∈R,sinx+cosxmanfen5.com 满分网
②∃x∈[0,manfen5.com 满分网],manfen5.com 满分网=cosx
③已知随机变量X~N(μ,ρ2),ρ越小,则X集中在μ周围的概率越大;
④用相关指数R2来刻画回归的效果就越好,R2取值越大,则残差平方和越小,模型拟合的效果就越好.其中为真命题的是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.