已知对任意的x>0恒有a1nx≤b(x-1)成立.
(1)求正数a与b的关系;
(2)若a=1,设f(x)=m
+n,(m,n∈R),若1nx≤f(x)≤b(x-1)对∀x>0恒成立,求函数f(x)的解析式;
(3)证明:1n(n!)>2n-4
(n∈N,n≥2)
考点分析:
相关试题推荐
一个截面为抛物线形的旧河道(如图1),河口宽AB=4米,河深2米,现要将其截面改造为等腰梯形(如图2),要求河道深度不变,而且施工时只能挖土,不准向河道填土.
(1)建立恰当的直角坐标系并求出抛物线弧AB的标准方程;
(2)试求当截面梯形的下底(较长的底边)长为多少米时,才能使挖出的土最少?
查看答案
已知数列{a
n}中,a
1=3,a
2=5,其前n项和S
n满足S
n+S
n-2=2S
n-1+2
n-1(n≥3).令b
n=
.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)若f(x)=2
x-1,求证:Tn=b
1f(1)+b
2f(2)+…+b
nf(n)<
(n≥1).
查看答案
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
查看答案
某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如右图:
(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表.据此,计算这100名学生身高数据的期望μ及标准差φ(精确到0.1);
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数.
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
| 身高达标 | 身高不达标 | 总计 |
积极参加体育锻炼 | 40 | | |
不积极参加体育锻炼 | | 15 | |
总计 | | | 100 |
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K
2=
,参考数据:
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
,-1).
(1)求φ;
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.
查看答案