(1)分别将n=1,2,3代入Sn=2an-n中便可求出数列{an}的前三项a1,a2,a3的值;
(2)先根据(1)中的答案猜想an的通项公式,然后分别讨论n=1和n≥2时an的表达式满足猜想即可证明;
(3)根据(2)中求得的an的通项公式然后写出的表达式即可证明对任意n∈N*都有.
【解析】
(1)令n=1得,S1=2a1-1=a1,故a1=1;
令n=2得,S2=2a2-2=a1+a2=1+a2,故a2=3;
令n=3得,S3=2a3-3=a1+a2+a3=1+3+a3,故a3=7;
(2)由(1)可以猜想an=2n-1,下面用数学归纳法进行证明:
①当n=1时,结论显然成立;
②假设当n=k时结论成立,即ak=2k-1,
从而由已知Sn=2an-n可得:Sk=2ak-k=2(2k-1)-k=2k+1-k-2.
故Sk+1=2k+2-k-3.
∴ak+1=Sk+1-Sk=(2k+2-k-3)-(2k+1-k-2)=2k+1-1.
即,当n=k+1时结论成立.
综合①②可知,猜想an=2n-1成立.即,数列{an}的通项为an=2n-1.
(3)∵an=2n-1,
∴an+1-an=(2n+1-1)-(2n-1)=2n,
∴,
∴对任意n∈N*都有.