满分5 > 高中数学试题 >

已知方程x2+y2-2x-4y+m=0. (1)若此方程表示圆,求m的取值范围;...

已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且manfen5.com 满分网(其中O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
(1)将x2+y2-2x-4y+m=0转化为:(x-1)2+(y-2)2=5-m,由方程表示圆,则有5-m>0. (2)先将直线与圆方程的联立,由相交于两点,则有△=(-16)2-4×5×(8+m)>0,又,得出x1x2+y1y2=0,由韦达定理求解. (3)线段的中点为圆心,圆心到端点的距离为半径,从而求得结论. 【解析】 (1)x2+y2-2x-4y+m=0即(x-1)2+(y-2)2=5-m(2分) 若此方程表示圆,则5-m>0∴m<5 (2)x=4-2y代入得5y2-16y+8+m=0 ∵△=(-16)2-4×5×(8+m)>0 ∴, ∵得出:x1x2+y1y2=0而x1x2=(4-2y1)•(4-2y2)=16-8(y1+y2)+4y1y2 ∴5y1y2-8(y1+y2)+16=0,∴满足故的m值为. (3)设圆心为(a,b),且O点为以MN为直径的圆上的点 半径圆的方程
复制答案
考点分析:
相关试题推荐
如图所示,在三棱柱ABC-A1B1C1中,侧面A1ABB1和BCC1B1是两个全等的正方形,AC1⊥平面A1DB,D为AC的中点.
(1)求证:平面A1ABB1⊥平面BCC1B1
(2)求证:B1C∥平面A1DB.

manfen5.com 满分网 查看答案
已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0.AC边上的高BH所在直线为x-2y-5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.
查看答案
如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.
manfen5.com 满分网
(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.
查看答案
设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为2manfen5.com 满分网,求圆的方程.
查看答案
已知两平行直线ℓ1:ax-by+4=0与ℓ2:(a-1)x+y-2=0.且坐标原点到这两条直线的距离相等.求a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.