(1)首先考虑函数的定义域,然后求出导函数=0时的值,讨论导数大于小于0时函数的递增递减区间即可;
(2)由题意可知导函数等于0时在(-1,+∞)有两个不等实根,即2x2+2x+b=0在(-1,+∞)有两个不等实根,设g(x)=2x2+2x+b=0,然后讨论根的判别式大于0即g(-1)大于0得到b的范围即可.
【解析】
(1)由题意知,f(x)的定义域为(-1,+∞),b=-12时,
由 ,得x=2(x=-3舍去),
当x∈(-1,2)时,f'(x)<0,当x∈(2,+∞)时,f'(x)>0,
所以当x∈(2,+∞)时,f(x)单调递增.
(2)由题意 在(-1,+∞)有两个不等实根,
即2x2+2x+b=0在(-1,+∞)有两个不等实根,
设g(x)=2x2+2x+b,则 ,
解之得