(1)先根据向量数量积的运算写出函数f(x)的解析式,对函数f(x)进行求导后代入到函数F(x)中化简为y=Asin(wx+ρ)+b的形式,然后根据正弦函数的性质可得到答案.
(2)对f(x)=2f′(x)进行整理,可以得到x的正切值,然后对分子分母同时除以tan2x得到tanx的关系式,即可得到答案.
【解析】
(1)f(x)=sinx+cosx
∴f′(x)=cosx-sinx,
∴F(x)=f(x)f′(x)+f2(x)
=cos2x-sin2x+1+2sinxcosx
=1+sin2x+cos2x
=
∴当(k∈Z)时,
最小正周期为
(2)∵f(x)=2f′(x)⇒sinx+cosx=2cosx-2sinx
∴cosx=3sinx
∴.