设数列{a
n}的前n项和为S
n,已知S
n=2a
n-2
n+1 (n∈N*).
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设b
n=
,数列{b
n}的前n项和为B
n,若存在整数m,使对任意n∈N*且n≥2,都有B
3n-B
n>
成立,求m的最大值;
(Ⅲ)令c
n=(-1)
n+1,数列{c
n}的前n项和为T
n,求证:当n∈N*且n≥2时,T
2n<
.
考点分析:
相关试题推荐
已知函数f(x)=
.
(Ⅰ)讨论函数f(x)的极值情况;
(Ⅱ)设g(x)=ln(x+1),当x
1>x
2>0时,试比较f(x
1-x
2)与g(x
1-x
2)及g(x
1)-g(x
2)三者的大小;并说明理由.
查看答案
设向量
=(0,2),
=(1,0),过定点A(0,-2),以
+λ
方向向量的直线与经过点B(0,2),以向量
-2λ
为方向向量的直线相交于点P,其中λ∈R,
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过E(1,0)的直线l与C交于两个不同点M、N,求
•
的取值范围.
查看答案
如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)求直线FD与平面ABCD所成的角;
(2)求点D到平面BCF的距离;
(3)求二面角B-FC-D的大小.
查看答案
某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.
查看答案
在△ABC中,a,b,c分别为角A,B,C所对的三边.
(1)若a=b,sinB=sin(A+60°),求角A;
(2)若BC=
,A=
,设B=x,△ABC的面积为y,求函数y=f(x)的关系式及其最值,并确定此时x的值.
查看答案