满分5 > 高中数学试题 >

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差...

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(Ⅰ)求数列{an}的通项公式(用n,d表示);
(Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值.
(I)根据等差数列的通项公式,结合已知,列出关于a1、d的方程,求出a1,进而推出sn,再利用an与sn的关系求出an. (II)利用(I)的结论,对Sm+Sn>cSk进行化简,转化为基本不等式问题求解;或求出c的最大值的范围,利用夹逼法求出a的值. 【解析】 (Ⅰ)由题意知:d>0,2a2=a1+a3⇒3a2=S3⇒3(S2-S1)=S32a2=a1+a3⇒3a2=S3⇒3(S2-S1)=S3,, 化简,得:, 当n≥2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1情形. 故所求an=(2n-1)d2 (Ⅱ)(方法一)Sm+Sn>cSk⇒m2d2+n2d2>c•k2d2⇒m2+n2>c•k2,恒成立. 又m+n=3k且m≠n,, 故,即c的最大值为. (方法二)由及,得d>0,Sn=n2d2. 于是,对满足题设的m,n,k,m≠n,有. 所以c的最大值. 另一方面,任取实数.设k为偶数,令,则m,n,k符合条件,且. 于是,只要9k2+4<2ak2,即当时,. 所以满足条件的,从而.因此c的最大值为.
复制答案
考点分析:
相关试题推荐
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行
四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,
manfen5.com 满分网
(1)证明:平面ACD⊥平面ADE;
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式;
(3)当V(x)取得最大值时,求二面角D-AB-C的大小.

manfen5.com 满分网 查看答案
甲、乙、丙、丁4名同学被随机地分到A、B、C三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到A社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量ξ为四名同学中到A社区的人数,求ξ的分布列和Eξ的值.
查看答案
已知向量manfen5.com 满分网=(sinB,1-cosB)与向量manfen5.com 满分网=(2,0)的夹角为manfen5.com 满分网,其中A、B、C是△ABC的内角.
(Ⅰ)求角B的大小;
(Ⅱ)求sinA+sinC的取值范围.
查看答案
有以下四个命题:
①△ABC中,“A>B”是“sinA>sinB”的充要条件;
②若数列{an}为等比数列,且a4=4,a8=9,则a6=±6;
③不等式manfen5.com 满分网的解集为{x|x<-5};
④若P是双曲线manfen5.com 满分网上一点,F1,F2分别是双曲线的左、右焦点,且|PF1|=7,则|PF2|=13.
其中真命题的序号为    .(把正确的序号都填上) 查看答案
从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于1,则取出这样的子集的概率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.