直四棱柱ABCD-A
1B
1C
1D
1中,∠ADC=90°,△ABC为等边三角形,且AA
1=AD=DC=2.
(Ⅰ)求异面直线AC
1与BC所成的角余弦值;
(Ⅱ)求证:BD⊥平面AC
1;
(Ⅲ)求二面角B-AC
1-C的正切值.
考点分析:
相关试题推荐
已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率.
查看答案
已知函数f(x)=x
3-x
2-x.
(Ⅰ)求函数f(x)在点(2,2)处的切线方程;
(Ⅱ)求函数f(x)的极大值和极小值.
查看答案
若函数y=f(x)(x∈R)满足f(x+2 )=f(x),且x∈[-1,1]时,f(x)=|x|,函数y=g(x)是偶函数,且x∈(0,+∞)时,g(x)=|log3x|.则函数y=f(x)图象与函y=g(x)图象的交点个数为
查看答案
已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的4个红球和4个黑球,现从甲、乙两个盒内各任取2个球,则取出的4个球中恰有一个红球的概率是
查看答案
某中学在高一开设了数学史等4门不同的选项修课,每个学生必须选项修,且只从中选一门.该校高一的3名学生甲、乙、丙对这4门选课的兴趣相同,则3个学生选择了3门不同的选修课的概率是
.
查看答案