满分5 > 高中数学试题 >

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af...

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网(n∈N*),bn=manfen5.com 满分网(n∈N*),考察下列结论:
①f(0)=f(1);
②f(x)为偶函数;
③数列{bn}为等差数列;
④数列{an}为等比数列,
其中正确的是    .(填序号)
令x=y=0,得f(0)=f(0•0)=0,令x=y=1得f(1)=f(1•1)=2f(1),∴f(1)=0,可知正确; 用特例,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2),故f(x)不是偶函数, f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,有bn=bn-1+1,符合等差数列定义; b1═1,bn=1+(n-1)×1=n,f(2n)=2nbn=n2n,an═2n,故数列{an}是等比数列. 【解析】 ∵f(0)=f(0•0)=0,f(1)=f(1•1)=2f(1),∴f(1)=0,①正确; f(1)=f[(-1)•(-1)]=-2f(-1), ∴f(-1)=0,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2), 故f(x)不是偶函数, 故②错; 则f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n, ∴bn=bn-1+1,∴{bn}是等差数列,④正确; b1═1,bn=1+(n-1)×1=n,f(2n)=2nbn=n2n,an═2n, 故数列{an}是等比数列,③正确. 故答案为:①③④
复制答案
考点分析:
相关试题推荐
若θ∈R,且满足条件manfen5.com 满分网,则二次函数f(x)=a2x2-2a2x+1(a为常数)的值域为    查看答案
某气象台预报每天天气的准确率为0.8,则在未来3天中,至少有2天预报准确的概率是    .(结果用数字表示) 查看答案
定义运算:manfen5.com 满分网=a1a4-a2a3,则函数f(x)=manfen5.com 满分网的最大值是    查看答案
已知数列{an}是等差数列,且a7-2a4=-1,a3=0,则d=    查看答案
在正四面体P-ABC中,M为△ABC内(含边界)一动点,且点M到三个侧面PAB、PBC、PCA的距离成等差数列,则点M的轨迹是( )
A.一条线段
B.椭圆的一部分
C.双曲线的一部分
D.抛物线的一部分
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.