满分5 > 高中数学试题 >

已知函数(a、b∈R), (Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与...

已知函数manfen5.com 满分网(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在manfen5.com 满分网为增函数,manfen5.com 满分网为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.
(I)第一问根据函数解析式的特征可以判断b=0,再把函数变形后利用三角函数有界性来求解出函数的最值. (II)第二问利用f(x)为奇函数求出a=0(1)中因为x=是函数的极值即得出b=0(2)先判断函数的单调性再利用其求出函数最值. 【解析】 (Ⅰ)∵f(x)在x∈R上存在最大值和最小值, ∴b=0(否则f(x)值域为R), ∴⇒3y2-4ay+a2-1≤0, 又△=4a2+12>0,由题意有, ∴a=2010; (Ⅱ)若f(x)为奇函数,∵x∈R,∴f(0)=0⇒a=0, ∴,, (1)若∃b∈R,使f(x)在(0,)上递增,在(,π)上递减, 则, ∴b=0 并且当时,f'(x)>0,f(x)递增, 当时f'(x)<0,f(x)递减, ∴当b=0时满足题意. (2)① △=4[(1-2b)2+b(1-4b)]=4(1-3b) 若△≤0,即,则f'(x)≤0对∀x≥0恒成立,这时f(x)在[0,+∞)上递减, ∴f(x)≤f(0)=0, ②若b<0,则当x≥0时,-bx∈[0,+∞),,不可能恒小于等于0, ③若b=0,则不合题意, ④若, 则,f'(π)=-b-1<0, ∴∃x∈(0,π),使f'(x)=0,x∈(0,x)时,f'(x)>0, 这时f(x)递增,f(x)>f(0)=0,不合题意, 综上.
复制答案
考点分析:
相关试题推荐
已知整数数列{an}满足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求数列{an}的通项公式;
(2)将数列{an}中的所有项依次按如图所示的规律循环地排成如下三角形数表:
manfen5.com 满分网

依次计算各个三角形数表内各行中的各数之和,设由这些和按原来行的前后顺序构成的数列为{bn},求b5+b100的值;
(3)令manfen5.com 满分网(b为大于等于3的正整数),问数列{cn}中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.
查看答案
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元.
(1)写出y(单位:元)关于ω单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=manfen5.com 满分网×100%;在切割过程中的重量损耗忽略不计)
查看答案
manfen5.com 满分网,方程f(x)=x有唯一解,已知f(xn)=xn+1(n∈N*),且manfen5.com 满分网
(1)求数列{xn}的通项公式;
(2)若manfen5.com 满分网,求和Sn=b1+b2+…+bn
(3)问:是否存在最小整数m,使得对任意n∈N*,有manfen5.com 满分网成立,若存在,求出m的值;若不存在,说明理由.
查看答案
已知 f(θ)=a sinθ+b cosθ,θ∈[0,π],且1与2cos 2 manfen5.com 满分网的等差中项大于1与 sin 2 manfen5.com 满分网的等比中项的平方.
求:(1)当a=4,b=3时,f(θ) 的最大值及相应的 θ 值;
(2)当a>b>0时,f(θ) 的值域.
查看答案
在△ABC中,内角A,B,C对边的边长分别是a,b,c,且满足a2+b2=ab+4,manfen5.com 满分网
(1)manfen5.com 满分网时,若sinC+sin(B-A)=2sin2A,求△ABC的面积;
(2)求△ABC的面积等于manfen5.com 满分网的一个充要条件.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.