满分5 > 高中数学试题 >

在数列{an}中,a1=1,an+1=2an+2n. (Ⅰ)设bn=.证明:数列...

在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设bn=manfen5.com 满分网.证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn
(1)由an+1=2an+2n构造可得即数列{bn}为等差数列 (2)由(1)可求=n,从而可得an=n•2n-1 利用错位相减求数列{an}的和 【解析】 由an+1=2an+2n.两边同除以2n得 ∴,即bn+1-bn=1 ∴{bn}以1为首项,1为公差的等差数列 (2)由(1)得 ∴an=n•2n-1 Sn=2+2×21+3×22+…+n•2n-1 2Sn=21+2×22+…+(n-1)•2n-1+n•2n ∴-Sn=2+21+22+…+2n-1-n•2n = ∴Sn=(n-1)•2n+1
复制答案
考点分析:
相关试题推荐
已知α为锐角,sinα=manfen5.com 满分网,tan(α-β)=manfen5.com 满分网,求cos2α和tanβ的值.
查看答案
已知函数manfen5.com 满分网定义域是[a,b](a,b∈Z),值域是[-1,0],则满足条件的整数对(a,b)有     对. 查看答案
manfen5.com 满分网将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为    查看答案
在数列{an}中,若a1=1,an+1=2an+3(n≥1),则该数列的通项an=    查看答案
已知向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网.设manfen5.com 满分网manfen5.com 满分网的夹角为θ1manfen5.com 满分网manfen5.com 满分网的夹角为θ2manfen5.com 满分网manfen5.com 满分网的夹角为θ3,则它们的大小关系是    (按从大到小) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.