满分5 > 高中数学试题 >

已知曲线E上任意一点P到两个定点和的距离之和为4, (1)求曲线E的方程; (2...

已知曲线E上任意一点P到两个定点manfen5.com 满分网manfen5.com 满分网的距离之和为4,
(1)求曲线E的方程;
(2)设过(0,-2)的直线l与曲线E交于C、D两点,且manfen5.com 满分网(O为坐标原点),求直线l的方程.
(1)根据题中条件:“距离之和为4”结合椭圆的定义,可知动点M的轨迹为椭圆,从而即可写出动点M的轨迹方程; (2)先考虑当直线l的斜率不存在时,不满足题意,再考虑当直线l的斜率存在时,设直线l的方程为y=kx-2,设C(x1,y1),D(x2,y2),由向量和数量积可得:x1x2+y1y2=0,由方程组,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系即可求得k值,从而解决问题. 【解析】 (1)根据椭圆的定义,可知动点M的轨迹为椭圆 其中a=2,,则, 所以动点M的轨迹方程为; (2)当直线l的斜率不存在时,不满足题意, 当直线l的斜率存在时,设直线l的方程为y=kx-2,设C(x1,y1),D(x2,y2), ∵, ∴x1x2+y1y2=0, ∵y1=kx1-2,y2=kx2-2, ∴y1y2=k2x1•x2-2k(x1+x2)+4, ∴(1+k2)x1x2-2k(x1+x2)+4=0① 由方程组 得(1+4k2)x2-16kx+12=0, 则,, 代入①,得, 即k2=4,解得,k=2或k=-2, 所以,直线l的方程是y=2x-2或y=-2x-2.
复制答案
考点分析:
相关试题推荐
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=manfen5.com 满分网,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网互相垂直,其中manfen5.com 满分网
(1)求sinθ和cosθ的值
(2)若manfen5.com 满分网,0<ϕ<manfen5.com 满分网,求cosϕ的值.
查看答案
在△ABC中,已知三边长分别为a=32cm,b=23cm,c=37cm,求△ABC的面积.
查看答案
数列{an}的通项公式为manfen5.com 满分网,则该数列的前n项和Sn=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.