本题是抽象函数及其应用类问题.在解答时,首先要分析条件当中的特殊函数值,然后结合条件所给的抽象表达式充分利用特值得思想进行分析转化,例如结合表达式的特点1=0+1等,进而问题即可获得解答.
【解析】
由题意可知:
f(1)=f(0+1)=f(0)+f(1)+2×0×1
=f(0)+f(1),
∴f(0)=0.
f(0)=f(-1+1)=f(-1)+f(1)+2×(-1)×1
=f(-1)+f(1)-2,
∴f(-1)=0.
f(-1)=f(-2+1)=f(-2)+f(1)+2×(-2)×1
=f(-2)+f(1)-4,
∴f(-2)=2.
f(-2)=f(-3+1)=f(-3)+f(1)+2×(-3)×1
=f(-3)+f(1)-6,
∴f(-3)=6.
故答案为:6.