在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=
,b=
,1+2cos(B+C)=0,求边BC上的高.
考点分析:
相关试题推荐
已知二次函数f(x)=ax
2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对∀x
1,x
2∈R,且x
1<x
2,f(x
1)≠f(x
2),试证明∃x
∈(x
1,x
2),使
成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对∀x∈R,f(x-4)=f(2-x),且f(x)≥0;②对∀x∈R,都有
.若存在,求出a,b,c的值,若不存在,请说明理由.
查看答案
设函数
.
(I)求f′(x)的表达式;
(Ⅱ)求函数f(x)的单调区间、极大值和极小值;
(Ⅲ)若x∈[a+1,a+2]时,恒有f′(x)>-3a,求实数a的取值范围.
查看答案
已知函数f(x)=
(x∈R).
(1)求函数f(x)的最小正周期;
(2)计算f(1)+f(2)+…+f(2008).
查看答案
数列{a
n}是以a
1=4为首项的等比数列,且S
3,S
2,S
4成等差数列.
(1)求{a
n}的通项公式;
(2)设b
n=log
2|a
n|,T
n为数列{
}的前n项的和,求T
n.
查看答案
已知|
|=4,|
|=3,(2
)
=61,
求:(1)向量
与
的夹角θ;
(2)|
|
查看答案