(I)由已知函数,我们易求出函数的最小正周期,又由P的坐标为(1,A),我们易构造出一个关于φ的三角方程,结合解三角方程即可求出φ值.
(II)根据(I)的结论及R的坐标,和,利用余弦定理我们易构造出一个关于A的方程,解方程即可得到A的值.
【解析】
(I)由题意得,T==6
∵P(1,A)在函数的图象上
∴=1
又∵
∴φ=
(II)由P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A),结合(I)可知点Q的坐标为(4,-A)
连接PQ,在△PRQ中,∠PRQ=
可得,∠QRX=,作QM⊥X轴于M,则QM=A,RM=3,
所以有tan===
∴A=