满分5 > 高中数学试题 >

设函数f(x)=sinxcosx-cos(x+π)cosx,(x∈R) (I)求...

设函数f(x)=sinxcosx-manfen5.com 满分网cos(x+π)cosx,(x∈R)
(I)求f(x)的最小正周期;
(II)若函数y=f(x)的图象按manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,manfen5.com 满分网]上的最大值.
(I)先利用诱导公式,二倍角公式与和角公式将函数解析式化简整理,然后利用周期公式可求得函数的最小正周期. (II)由(I)得函数y=f(x),利用函数图象的变换可得函数y=g(x)的解析式,通过探讨角的范围,即可的函数g(x)的最大值. 【解析】 (I)∵f(x)=sinxcosx-cos(x+π)cosx =sinxcosx+cosxcosx =sin2x+cos2x+ =sin(2x+)+ ∴f(x)的最小正周期T==π (II)∵函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象, ∴g(x)=sin(2x+-)++=sin(2x-)+ ∵0<x≤∴<2x-≤, ∴y=g(x)在(0,]上的最大值为:.
复制答案
考点分析:
相关试题推荐
设α∈R,f(x)=cosx(asinx-cosx)+cos2manfen5.com 满分网-x)满足manfen5.com 满分网,求函数f(x)在manfen5.com 满分网上的最大值和最小值.
查看答案
manfen5.com 满分网已知函数manfen5.com 满分网,x∈R,A>0,manfen5.com 满分网.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若点R的坐标为(1,0),manfen5.com 满分网,求A的值.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)若不等式|f(x)-m|<2在定义域上恒成立,求实数m的取值范围.
查看答案
在△ABC中,manfen5.com 满分网
(Ⅰ)证明B=C:
(Ⅱ)若cosA=-manfen5.com 满分网,求sinmanfen5.com 满分网的值.
查看答案
已知函数f(x)=2manfen5.com 满分网sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函数f(x)的最小正周期及在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若f(x)=manfen5.com 满分网,x∈[manfen5.com 满分网manfen5.com 满分网],求cos2x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.