满分5 > 高中数学试题 >

设函数. (1)求函数f(x)的单调区间、极值. (2)若当x∈[a+1,a+2...

设函数manfen5.com 满分网
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
(1)对函数f(x)进行求导,根据导数大于0时原函数单调递增,导函数小于0时原函数单调递减可求单调区间进而求出极值点. (2)将(1)中所求的导函数f'(x)代入|f'(x)|≤a得到不等关系式,再由函数f'(x)的单调性求出最值可得解. 【解析】 f'(x)=-x2+4ax-3a2.令f'(x)=-x2+4ax-3a2=0,得x=a或x=3a由表 可知:当x∈(-∞,a)时,函数f(x)为减函数,当x∈(3a,+∞)时.函数f(x)也为减函数; 当x∈(a,3a)时,函数f(x)为增函数. 当x=a时,f(x)的极小值为时,f(x)的极大值为b. (2)由|f'(x)|≤a,得-a≤-x2+4ax-3a2≤a. ∵0<a<1,∴a+1>2a,f'(x)=-x2+4ax-3a2在[a+1,a+2]上为减函数. ∴[f'(x)]max=f'(a+1)=2a-1,[f'(x)]min=f'(a+2)=4a-4. 于是,问题转化为求不等式组的解.解得.又0<a<1,∴.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn
(1)求数列{an}的通项公式;
(2)若manfen5.com 满分网,,求数列{bn}的前n项和Tn
查看答案
已知椭圆x2+by2=3a与直线x+y-1=0相交于A、B两点
(1)当manfen5.com 满分网时,求实数b的取值范围;
(2)当manfen5.com 满分网时,AB的中点M与椭圆中心连线的斜率为manfen5.com 满分网时,求椭圆的方程.
查看答案
如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.
(1)求证:DF∥平面ABC;
(2)求二面角F-BD-A的大小.

manfen5.com 满分网 查看答案
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围.
查看答案
在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网,求∠A和tanB的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.