满分5 > 高中数学试题 >

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证: (1)...

manfen5.com 满分网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1
(2)A1C⊥面AB1D1
(1)欲证C1O∥面AB1D1,根据直线与平面平行的判定定理可知只需证C1O与面AB1D1内一直线平行,连接A1C1,设A1C1∩B1D1=O1,连接AO1,易得C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,满足定理所需条件; (2)欲证A1C⊥面AB1D1,根据直线与平面垂直的判定定理可知只需证A1C与面AB1D1内两相交直线垂直根据线面垂直的性质可知A1C⊥B1D1,同理可证A1C⊥AB1,又D1B1∩AB1=B1,满足定理所需条件. 证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1, ∵ABCD-A1B1C1D1是正方体, ∴A1ACC1是平行四边形, ∴A1C1∥AC且A1C1=AC, 又O1,O分别是A1C1,AC的中点, ∴O1C1∥AO且O1C1=AO, ∴AOC1O1是平行四边形, ∴C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1, ∴C1O∥面AB1D1; (2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!, 又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1, 同理可证A1C⊥AB1,又D1B1∩AB1=B1, ∴A1C⊥面AB1D1
复制答案
考点分析:
相关试题推荐
已知命题p:(4-x)2≤36,命题q:x2-2x+(1-m)(1+m)<0(m>0),若p是q的充分非必要条件,求实数m的取值范围.
查看答案
曲线C上的每一点到定点F(2,0)的距离与到定直线l:x=-2的距离相等.
(Ⅰ)求出曲线C的标准方程;
(Ⅱ) 若直线y=x-2与曲线C交于A,B两点,求弦AB的长.
查看答案
如图所示,某圆柱状铜制铸件,内部为正三棱柱状中空,正三棱柱的上下底面三角形A′B′C′和三角形ABC分别内接于圆柱的上下底面,已知圆柱的底面直径为为12cm,高为10cm,求此铜制铸件的体积V.(结果保留π和根号即可)

manfen5.com 满分网 查看答案
已知圆心在直线3x-y=0上的圆C在x轴的上方与x轴相切,且半径为3.
(Ⅰ)求圆C的方程;
(Ⅱ)已知直线l:y+1=k(x+2)与圆C相切,求直线l的方程.
查看答案
已知m,n是不同的直线,α,β是不重合的平面,给出下列命题:①若α∥β,m⊂α,n⊂β,则m∥n;②若m⊥α,n⊥β,m∥n,则α∥β;③若α∥β,m⊂α,则m∥β;其中真命题的序号是    (写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.