满分5 > 高中数学试题 >

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程;...

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为manfen5.com 满分网
(1)求双曲线C的方程;
(2)若直线manfen5.com 满分网与双曲线C恒有两个不同的交点A和B,且manfen5.com 满分网(其中O为原点).求k的取值范围.
(1)由双曲线的右焦点与右顶点易知其标准方程中的c、a,进而求得b,则双曲线标准方程即得; (2)首先把直线方程与双曲线方程联立方程组,然后消y得x的方程,由于直线与双曲线恒有两个不同的交点,则关于x的方程必为一元二次方程且判别式大于零,由此求出k的一个取值范围;再根据一元二次方程根与系数的关系用k的代数式表示出xA+xB,xAxB,进而把条件转化为k的不等式,又求出k的一个取值范围,最后求k的交集即可. 【解析】 (1)设双曲线方程为(a>0,b>0). 由已知得. 故双曲线C的方程为. (2)将. 由直线l与双曲线交于不同的两点得 即.① 设A(xA,yA),B(xB,yB), 则, 而=. 于是.② 由①、②得. 故k的取值范围为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2+2ln(x+1),其中a为实数.
(1)若f(x)在x=1处有极值,求a的值;
(2)若f(x)在[2,3]上是增函数,求a的取值范围.
查看答案
如图所示,直三棱柱ABC-A1B1C1中,CA=CB=2,∠BCA=90°,棱AA1=4,E、M、N分别是CC1、A1B1、AA1的中点.
(1)求证:A1B⊥C1M;
(2)求BN的长;
(3)求二面角B1-A1E-C1平面角的余弦值.

manfen5.com 满分网 查看答案
甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜.你认为此游戏是否公平?请说明你的理由.
查看答案
设函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的最大值和最小值.
查看答案
某资料室在计算机使用中,如下表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的.
111111
123456
1357911
147101316
159131721
1611162126
此表中,1,3,7,13,21,…的通项公式为    ;编码51共出现    次. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.