满分5 > 高中数学试题 >

设f(x)是定义在R上的偶函数,对于任意的x∈R,都有f(x-2)=f(2+x)...

设f(x)是定义在R上的偶函数,对于任意的x∈R,都有f(x-2)=f(2+x),且当x∈[-2,0]时,f(x)=manfen5.com 满分网-1,若在区间(-2,6]内关于x的方程f(x)-logax+2=0恰有3个不同的实数解,则a的取值范围是( )
A.(1,2)
B.(2,+∞)
C.(1,manfen5.com 满分网
D.(manfen5.com 满分网,2)
由已知中f(x)是定义在R上的偶函数,对于任意的x∈R,都有f(x-2)=f(2+x),我们可以得到函数f(x)是一个周期函数,且周期为4,则不难画出函数f(x)在区间(-2,6]上的图象,结合方程的解与函数的零点之间的关系,我们可将方程f(x)-logax+2=0恰有3个不同的实数解,转化为函数f(x)的与函数y=)-logax+2的图象恰有3个不同的交点,数形结合即可得到实数a的取值范围. 【解析】 ∵对于任意的x∈R,都有f(x-2)=f(2+x), ∴函数f(x)是一个周期函数,且T=4 又∵当x∈[-2,0]时,f(x)=-1,且函数f(x)是定义在R上的偶函数, 故函数f(x)在区间(-2,6]上的图象如下图所示: 若在区间(-2,6]内关于x的方程f(x)-logax+2=0恰有3个不同的实数解 则loga4<3,loga8>3, 解得:<a<2 故选D
复制答案
考点分析:
相关试题推荐
已知A、B是椭圆manfen5.com 满分网长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,且k1k2≠0.若|k1|+|k2|的最小值为1,则椭圆的离心率( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得manfen5.com 满分网=4a1,则manfen5.com 满分网的最小值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.不存在
查看答案
设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,manfen5.com 满分网对任意x>0恒成立,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
查看答案
设O为坐标原点,点A(1,1),若点manfen5.com 满分网,则manfen5.com 满分网取得最小值时,点B的个数是( )
A.1
B.2
C.3
D.无数个
查看答案
已知等差数列{an}的公差d<0,若a3a7=21,a1+a9=10,则使前n项和Sn>0成立的最大正整数n是( )
A.9
B.10
C.18
D.19
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.