满分5 > 高中数学试题 >

已知函数f(x)=(x2-ax+1)ex,(a≥0) (1)求函数f(x)的单调...

已知函数f(x)=(x2-ax+1)ex,(a≥0)
(1)求函数f(x)的单调区间;
(2)若对于任意x∈[0,1],f(x)≥1恒成立,求a取值范围.
(1)f'(x)=[x2+(2-a)x+(1-a)]ex=(x+1)(x+1-a)ex分类讨论:①当a=0时,②当a>0时,先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案. (2)先对a进行分类讨论:①当a=0时,②当a>1时,③当0<a≤1时,分别验证对于任意x∈[0,1],f(x)≥1是否恒成立,最后综合即得a取值范围. 【解析】 (1)f'(x)=[x2+(2-a)x+(1-a)]ex=(x+1)(x+1-a)ex ①当a=0时,f'(x)=(x+1)2ex,所以f'(x)=(x+1)2ex≥0对于任意x∈R成立,所以f(x)在x∈R单调增函数; ②当a>0时,由f'(x)=0解得x1=-1或x2=a-1,且x1<x2, 知f(x)在(-∞,-1)和(a-1,+∞)上增函数; 知f(x)在(-1,a-1)上减函数. (2)①当a=0时,f(x)在R上增函数,f(x)≥f(0)=1恒成立. ②当a>1时,f(x)在[0,a-1]上减函数,f(x)≤f(0)=1,不恒成立. ③当0<a≤1时,f(x)[0,1]上增函数,f(x)≥f(0)=1恒成立. 综上所述:0≤a≤1.
复制答案
考点分析:
相关试题推荐
在△ABC中,a、b、c分别为角A、B、C的对边,且C=manfen5.com 满分网,a+b=λc,(其中λ>1).
(Ⅰ)若c=λ=2时,求manfen5.com 满分网manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网(λ4+3)时,求边长c的最小值及判定此时△ABC的形状.
查看答案
已知圆C方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若manfen5.com 满分网,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量manfen5.com 满分网,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
查看答案
已知函数f(x)=2•a4-x,(a>0且a≠1),当且仅当点P(x,y)在函数f(x)=2•a4-x的图象时,点manfen5.com 满分网在函数y=g(x)图象上.
(1)求函数y=g(x)的解析式.
(2)求g(x)>1的解集.
查看答案
给出定义:若m-manfen5.com 满分网<x≤m+manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的四个命题:
①y=f(x)的定义域是R,值域是(manfen5.com 满分网manfen5.com 满分网];
②点(k,0)(k∈Z)是y=f(x)的图象的对称中心;
③函数y=f(x)的最小正周期为1;
④函数y=f(x)在(manfen5.com 满分网manfen5.com 满分网]上是增函数;
则其中真命题是    查看答案
在区间[t,t+1]上满足不等式|x3-3x+1|≥1的解有且只有一个,则实数t的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.