满分5 > 高中数学试题 >

函数的最小正周期是 .

函数manfen5.com 满分网的最小正周期是   
先根据两角和与差的正弦公式将函数化简为y=Asin(wx+ρ)的形式,再由T=得到答案. 【解析】 由题意可得: y=sin2x+cos2x =2( ) =2sin(2x+) ∴T==π 故答案为:π
复制答案
考点分析:
相关试题推荐
已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:
1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?
查看答案
在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.
查看答案
manfen5.com 满分网,是否存在整式g(n)使得a1+a2+…+an-1=g(n)•(an-1)对不小于2的一切自然数n都成立,并证明你的结论.
查看答案
如图,在正四棱锥P-ABCD中,点M为棱AB的中点,点N为棱PC上的点.
(1)若PN=NC,求证:MN∥平面PAD;
(2)试写出(1)的逆命题,并判断其真假.若为真,请证明;若为假,请举反例.

manfen5.com 满分网 查看答案
如图,在正方体ABCD-A1B1C1D1中,E、F分别是A1D1和A1B1的中点.
(1)求异面直线AE和BF所成角的余弦值;
(2)求平面BDD1与平面BFC1所成二面角的正弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.