满分5 > 高中数学试题 >

对任意x∈R,给定区间[k-,k+](k∈z),设函数f(x)表示实数x与x的给...

对任意x∈R,给定区间[k-manfen5.com 满分网,k+manfen5.com 满分网](k∈z),设函数f(x)表示实数x与x的给定区间内
整数之差的绝对值.
(1)当manfen5.com 满分网时,求出f(x)的解析式;当x∈[k-manfen5.com 满分网,k+manfen5.com 满分网](k∈z)时,写出用绝对值符号表示的f(x)的解析式;
(2)求manfen5.com 满分网的值,判断函数f(x)(x∈R)的奇偶性,并证明你的结论;
(3)当manfen5.com 满分网时,求方程manfen5.com 满分网的实根.(要求说明理由manfen5.com 满分网
(1)当x∈[-]时,根据定义,写出f(x)的解析式;当x∈[k-,k+](k∈z)时,由定义知:k为与x最近的一个整数,写出解析式即可;(2)根据(1)求得 即可,利用奇偶性的定义即可判断函数f(x)(x∈R)的奇偶性,(3)要求方程的根,即求|x-k|-logax=0的根,分类讨论,去掉绝对值符号,即可求得方程根的个数. 【解析】 (1)当x∈[-]时, 由定义知:x与0距离最近,f(x)=|x|,x∈[-] 当x∈[k-,k+](k∈z)时, 由定义知:k为与x最近的一个整数,故 f(x)=|x-k|,x∈[k-,k+](k∈z); (2)=, 判断f(x)是偶函数. 对任何x∈R,函数f(x)都存在,且存在k∈Z,满足 k-≤x≤k+,f(x)=|x-k|, 由k-≤x≤k+,可以得出-k-≤-x≤-k+, 即-x∈[-k-,-k+], 由(Ⅰ)的结论,f(-x)=|-x-(-k)|=|k-x|=|x-k|=f(x), 即f(x)是偶函数. (3)【解析】 ,即|x-k|-logax=0, ①当x>1时,|x-k|≥0>logax, ∴|x-k|-logax=0没有大于1的实根; ②容易验证x=1为方程|x-k|-logax=0的实根; ③当时,方程|x-k|-logax=0变为1-x-logax=0 设H(x)=logax-(1-x)() 则H′(x)=, 所以当时,H(x)为减函数,H(x)>H(1)=0, 所以方程没有的实根; ④当时,方程|x-k|-logax=0变为x-logax=0 设G(x)=logax-x(),显然G(x)为减函数, ∴G(x)≥G()=H()>0, 所以方程没有的实根. 综上可知,当时,方程有且仅有一个实根,实根为1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3-ax2-3x(a∈R).
(Ⅰ)若函数f(x)在区间[1,+∞)上为增函数,求实数a的取值范围;
(Ⅱ)若manfen5.com 满分网是函数f(x)的极值点,求函数f(x)在区间[1,a]上的最大值;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出b的取值范围;若不存在,试说明理由.
查看答案
manfen5.com 满分网如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=a,∠ABC=β.
(1)证明sina+cos2β=0;
(2)若AC=manfen5.com 满分网DC,求β的值.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)若不等式|f(x)-m|<2在定义域上恒成立,求实数m的取值范围.
查看答案
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线manfen5.com 满分网
(Ⅰ)求φ;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.

manfen5.com 满分网 查看答案
对于定义在R上的函数f(x),有下述命题:
①若f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
②若函数f(x-1)的图象关于直线x=1对称,则f(x)为偶函数;
③若对x∈R,有f(x-1)=-f(x),则f(x)的周期为2;
④函数y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
其中正确命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.