(I)由题意,可令公差为d,由等差数列的性质将用与公差d表示出来,再根据三者成等比数列,建立方程求公差,再根据等差数列的通项公式求其通项即可.
(II)由知,数列是一个等比数列,故求出其首项与公比,代入等比数列的前n项和公式即可
【解析】
(I)令公差为d,由a4=10得a3=10-d,a6=10+2d,a10=10+6d
∵a3,a6,a10成等比数列
∴故有(10+2d)2=(10-d)(10+6d)
∴d=1
∴an=a4+(n-4)d=n+6
(II)由=bn=2n+6
∴b1=21+6=128,q===2
∴故其前n项和为=2n+7-128