满分5 > 高中数学试题 >

已知直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到...

已知直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是   
设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值. 【解析】 设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=的距离d2=a2; P到直线l1:4x-3y+6=0的距离d1=, 则d1+d2=+a2=, 当a=时,P到直线l1和直线l2的距离之和的最小值为1 故答案为:1
复制答案
考点分析:
相关试题推荐
非零向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网的夹角的最小值是    查看答案
已知ξ的分布列如图所示设η=2ξ+1,则Eη=   
ξ123

P
manfen5.com 满分网manfen5.com 满分网b
查看答案
(1-x+x2)(1+x)6展开式中x3项的系数是    查看答案
manfen5.com 满分网如图,从双曲线manfen5.com 满分网的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为( )
A.|MO|-|MT|>b-a
B.|MO|-|MT|<b-a
C.|MO|-|MT|=b-a
D.以上三种可能都有
查看答案
已知平面内一点P∈{(x,y)|(x-2cosα)2+(y-2sinα)2=16,α∈R},则满足条件的点P在平面内所组成的图形的面积是( )
A.36π
B.32π
C.16π
D.4π
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.