满分5 > 高中数学试题 >

如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1...

manfen5.com 满分网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
(1)设出椭圆的标准方程,长轴长是短轴长的2倍求得a和b的关系,进而把点M代入椭圆方程求得a和b的另一个关系式,然后联立求得a和b,则椭圆的方程可得. (2)依题意可表示出直线l的方程,与椭圆方程联立消去y,根据判别式大于0求得m的取值范围. (3)设直线MA、MB的斜率分别为k1,k2,问题转化为证明k1+k2=0.设出点A,B的坐标,进而表示出两斜率,根据(2)中的方程式,根据韦达定理表示出x1+x2和x1x2,进而代入到k1+k2,化简整理求得结果为0,原式得证. 【解析】 (1)设椭圆方程为 则,解得 ∴椭圆方程 (2)∵直线l平行于OM,且在y轴上的截距为m 又 ∴l的方程为: 由,∴x2+2mx+2m2-4=0 ∵直线l与椭圆交于A、B两个不同点,∴△=(2m)2-4(2m2-4)>0, ∴m的取值范围是{m|-2<m<2且m≠0} (3)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可 设 由x2+2mx+2m2-4=0可得x1+x2=-2m,x1x2=2m2-4 而= = = = ∴k1+k2=0 故直线MA、MB与x轴始终围成一个等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1∥面BDC1
(Ⅱ)求二面角C1-BD-C的余弦值;
(Ⅲ)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

manfen5.com 满分网 查看答案
已知函数f(x)=sin(x+manfen5.com 满分网)+sin(x-manfen5.com 满分网)+cosx+a(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[-manfen5.com 满分网manfen5.com 满分网]上的最大值与最小值之和为manfen5.com 满分网,求实数a的值.
查看答案
给出下列四个结论:
①函数y=sinx在第一象限是增函数;
②函数manfen5.com 满分网的最小正周期是π;
③若am2<bm2,则a<b;
④函数f(x)=x-sinx(x∈R)有3个零点;
⑤对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x>0),则x<0时f′(x)>g′(x).
其中正确结论的序号是     .(填上所有正确结论的序号) 查看答案
棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是    manfen5.com 满分网 查看答案
已知数列{an}的通项公式为an=n•(-2)n,则数列{manfen5.com 满分网}成等比数列是数列{bn}的通项公式bn=n的    条件.(对充分性和必要性都要作出判断) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.