满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值 (1)求函数f(x)...

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围.
(1)解析式中有两个参数,故需要得到两个方程求参数,由于函数f(x)=ax3+bx2-3x在x=±1处取得极值,由极值存在的条件恰好可以得到两个关于参数的两个方程,由此解析式易求. (2)欲证对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4,可以求出函数在区间[-1,1]上的最值,若最大值减去最小值的差小于等于4,则问题得到证明,故问题转化为研究函数在区间[-1,1]上的单调性求最值的问题. (3)由于点A(1,m)(m≠-2),验证知此点不在函数图象上,可设出切点坐标M(x,y),然后用两种方式表示出斜率,建立关于切点横坐标的方程2x3-3x2+m+3=0,再借助函数的单调性与极值确定其有三个解的条件即可. 【解析】 (1)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,解得a=1,b=0. ∴f(x)=x3-3x (2)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1), 当-1<x<1时,f′(x)<0,故f(x)在区间[-1,1]上为减函数, fmax(x)=f(-1)=2,fmin(x)=f(1)=-2 ∵对于区间[-1,1]上任意两个自变量的值x1,x2, 都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)| |f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4 (3)f′(x)=3x2-3=3(x+1)(x-1), ∵曲线方程为y=x3-3x,∴点A(1,m)不在曲线上. 设切点为M(x,y),切线的斜率为(左边用导数求出,右边用斜率的两点式求出), 整理得2x3-3x2+m+3=0. ∵过点A(1,m)可作曲线的三条切线,故此方程有三个不同解,下研究方程解有三个时参数所满足的条件 设g(x)=2x3-3x2+m+3,则g′(x)=6x2-6x, 由g′(x)=0,得x=0或x=1. ∴g(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减. ∴函数g(x)=2x3-3x2+m+3的极值点为x=0,x=1 ∴关于x方程2x3-3x2+m+3=0有三个实根的充要条件是,解得-3<m<-2. 故所求的实数a的取值范围是-3<m<-2.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
查看答案
如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1∥面BDC1
(Ⅱ)求二面角C1-BD-C的余弦值;
(Ⅲ)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

manfen5.com 满分网 查看答案
已知函数f(x)=sin(x+manfen5.com 满分网)+sin(x-manfen5.com 满分网)+cosx+a(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[-manfen5.com 满分网manfen5.com 满分网]上的最大值与最小值之和为manfen5.com 满分网,求实数a的值.
查看答案
给出下列四个结论:
①函数y=sinx在第一象限是增函数;
②函数manfen5.com 满分网的最小正周期是π;
③若am2<bm2,则a<b;
④函数f(x)=x-sinx(x∈R)有3个零点;
⑤对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x>0),则x<0时f′(x)>g′(x).
其中正确结论的序号是     .(填上所有正确结论的序号) 查看答案
棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.