满分5 > 高中数学试题 >

定义F(x,y)=(1+x)y,x,y∈(0,+∞) (1)令函数f(x)=F(...

定义F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线c1,曲线c1与y轴交于点A(0,m),过坐标原点O作曲线c1的切线,切点为B(n,t)(n>0)设曲线c1在点A、B之间的曲线段与OA、OB所围成图形的面积为S,求S的值;
(2)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).
(1)求出f(x)的解析式,求出A的坐标,利用曲线在切点处的导数值是曲线的切线斜率,切点在曲线上,列出方程组求出B的坐标,将曲边图象的面积用定积分表示,利用微积分基本定理求出面积. (2)构造函数h(x),求出其导函数判断导函数的符号,判断出h(x)的单调性,利用其单调性得到不等式,利用不等式的性质得证. 【解析】 (1)∵F(x,y)=(1+x)y ∴f(x)=F(1,log2(x2-4x+9))=2log2(x2-4x+9)=x2-4x+9 故A(0,9) f'(x)=2x-4,过O作C1的切线,切点为B(n,t)(n>0), ∴解得B(3,6) ∴ (2)令 令∴ ∴P(x)在[0,+∞)单调递减. ∴当x>0时,有P(x)<P(0), ∴当x≥1时有h'(x)<0∴h(x)在[1,+∞)上单调递减. ∴1≤x<y时,有 yln(1+x)>xln(1+y) ∴(1+x)y>(1+y)x ∴当x,y∈N*且x<y时,F(x,y)>F(y,x)
复制答案
考点分析:
相关试题推荐
已知曲线f(x)=manfen5.com 满分网(x>0)上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=2+1(n∈N*),x1=1.
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn,求证:manfen5.com 满分网manfen5.com 满分网<4.
查看答案
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围.
查看答案
manfen5.com 满分网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
查看答案
如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1∥面BDC1
(Ⅱ)求二面角C1-BD-C的余弦值;
(Ⅲ)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

manfen5.com 满分网 查看答案
已知函数f(x)=sin(x+manfen5.com 满分网)+sin(x-manfen5.com 满分网)+cosx+a(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[-manfen5.com 满分网manfen5.com 满分网]上的最大值与最小值之和为manfen5.com 满分网,求实数a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.